
1/11

The JavaToDPR 1.0.3 Update
by Daniel U. Thibault

D.U.Thibault@Bigfoot.com
Prefatory comment: All of what follows was developed and tested under Java 2 1.4.2.

The original JavaToDPR class is very usefull, but it does break under certain conditions.
Here we will take a closer look at three issues and how they affect the behaviour of JNI
through javah (which JavaToDPR is supposed to mimic):

1) Inner classes
2) Embedded underscores and dollars in identifiers
3) Overloaded native methods

Here is a sample plain class:

public class
samplePlainClass
{
 native public int
 samplePlainNativeMethod();
}

It uses the default contructor (which we’ll do throughout this, as constructors cannot be
native and thus don’t affect JNI-Delphi much), and declares a single plain native method.

Running javah samplePlainClass gets us the samplePlainClass.h file:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class samplePlainClass */

#ifndef _Included_samplePlainClass
#define _Included_samplePlainClass
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: samplePlainClass
 * Method: samplePlainNativeMethod
 * Signature: ()I
 */
JNIEXPORT jint JNICALL Java_samplePlainClass_samplePlainNativeMethod
 (JNIEnv *, jobject);

#ifdef __cplusplus
}
#endif
#endif

From now on, we will omit the black lines, which don’t change or matter.

JavaToDPR 1.03 Update

2/11

No surprises here. The corresponding DPR (obtained by invoking java JavaToDPR -o
<dpr name>.dpr -platform Win32 samplePlainClass) is:

library samplePlainClass;

uses JNI;

(*
 * Class: samplePlainClass
 * Method: samplePlainNativeMethod
 * Signature: ()I
*)
function Java_samplePlainClass_samplePlainNativeMethod(PEnv: PJNIEnv;
Obj: JObject): JInt; stdcall;
begin
end;

exports
 Java_samplePlainClass_samplePlainNativeMethod;

end.

The correspondences are:
DPR H
library name (file title)
Comments Comments
Method signature Translation of method signature
Exports clause Repeats method signature

As expected, the JNI method signature consists of:
“Java_<class name>_<method name>”.

Introducing packages
Of course, most classes won’t lie in the default package. Here we move the
samplePlainClass to the samplePackage. This is done by adding a line to the source
file:

package samplePackage;

public class
samplePlainClass
{
 native public int
 samplePlainNativeMethod();
}

Here we run into an oddity. Running javah samplePlainClass works and gets us the
exact same file. However, we should really run javah
samplePackage.samplePlainClass, which gets us these slight changes:

JavaToDPR 1.03 Update

3/11

/* Header for class samplePackage_samplePlainClass */
/*
 * Class: samplePackage_samplePlainClass
 * Method: samplePlainNativeMethod
 * Signature: ()I
 */
JNIEXPORT jint JNICALL
Java_samplePackage_samplePlainClass_samplePlainNativeMethod
 (JNIEnv *, jobject);

Note how the dots (“.”) used in Java code to denote the package path (our class’ name is
now samplePackage.samplePlainClass) change to underscores. The JNI method
signature now consists of:
“Java_<package path>_<class name>_<method name>”.

The DPR (obtained by invoking java JavaToDPR -o <dpr name>.dpr -platform
Win32 samplePackage.samplePlainClass) follows suit:

library samplePackage_samplePlainClass;
(*
 * Class: samplePackage_samplePlainClass
 * Method: samplePlainNativeMethod
 * Signature: ()I
*)
function
Java_samplePackage_samplePlainClass_samplePlainNativeMethod(PEnv:
PJNIEnv; Obj: JObject): JInt; stdcall;
exports
 Java_samplePackage_samplePlainClass_samplePlainNativeMethod;

Introducing inner classes
Inner classes are a powerful feature of the Java language. Here we won’t consider
anonymous inner classes but concentrate on named inner classes instead. These classes
are declared within the declaration of an enclosing class, and their instances can exist
only in relation to an enclosing instance. In particular, instead of writing:

samplePlainClass sPC = new samplePlainClass();

If we have an inner class samplePlainInnerClass, we would write:

samplePlainInnerClass sPIC = sPC.new samplePlainInnerClass();

Should you need to locate an inner class’ constructor through the JNI, note that the
ObjectMethod name is “<init>” and the signature “(<enclosing class
signature><remaining constructor signature>)V”. For example, for our
samplePlainInnerClass, the (default) constructor signature is
“(LsamplePackage/samplePlainClass;)V”.

JavaToDPR 1.03 Update

4/11

Things get even more interesting if one wants to extend an inner class from outside of the
enclosing class, but that is beyond the scope of this document.

We add samplePlainInnerClass to our samplePlainClass like so:

package samplePackage;

public class
samplePlainClass
{
 native public int
 samplePlainNativeMethod();

 public class
 samplePlainInnerClass
 {
 native public float
 samplePlainNativeInnerClassMethod();
 }
}

Compiling this creates the usual samplePlainClass.class file, but also a
samplePlainClass$samplePlainInnerClass.class file. Indeed, the inner class’ full
name is samplePackage.samplePlainClass$samplePlainInnerClass.

We must run javah separately on the two classes. The outer class’ header does not
change. The inner class’ header is obtained by running javah
samplePackage.samplePlainClass$samplePlainInnerClass and comes out like this
(samplePackage_samplePlainClass_samplePlainInnerClass.h):

/* Header for class samplePackage_samplePlainClass_samplePlainInnerClass
*/
/*
 * Class: samplePackage_samplePlainClass_samplePlainInnerClass
 * Method: samplePlainNativeInnerClassMethod
 * Signature: ()F
 */
JNIEXPORT jint JNICALL
Java_samplePackage_samplePlainClass_00024samplePlainInnerClass_samplePla
inNativeInnerClassMethod
 (JNIEnv *, jobject);

We note several things. First, the periods and dollars are treated the same for labeling the
header file. Second, we see a divergence between the comment declaring the class name
(same as the file title) and the actual native method declaration. The JNI method
signature now consists of:
“Java_<package path>_<class name>_00024<inner class name>_<method
name>”.
The dollar is represented by “_00024”. An inner class could contain an inner class, and
so on, leading to a chain of dollar-separated names.

JavaToDPR 1.03 Update

5/11

JavaToDPR 1.0.0 breaks at this point, being unable to reproduce the inner class method
signatures correctly.

Introducing underscores and dollars

Java identifiers are very flexible, being able to use an overwhelming range of Unicode
characters. Interesting things happen (or fail to happen) when this spreads to the file
system. Here, we will concentrate on the two characters that the Java Language
Specification singles out as additional Java letters: the ASCII underscore (Unicode
\u005f) and the dollar sign (\u0024). We will introduce them both in the package, class
and method names, just to be really pernicious:

package sample_$tricky;

public class
sample_$trickyClass
{
 native public int
 sample_$tricky_NativeMethod();

 public class
 sample_$tricky_InnerClass
 {
 native public float
 sample_$tricky_NativeInnerClassMethod();
 }
}

Running javah sample_$tricky.sample_$trickyClass yields
sample_0005f_tricky_sample_0005f_trickyClass.h:

/* Header for class sample_0005f_tricky_sample_0005f_trickyClass */
/*
 * Class: sample_0005f_tricky_sample_0005f_trickyClass
 * Method: sample__00024tricky_NativeMethod
 * Signature: ()I
 */
JNIEXPORT jint JNICALL
Java_sample_1_00024tricky_sample_1_00024trickyClass_sample_1_00024tricky
_1NativeMethod
 (JNIEnv *, jobject);

The embedded underscores yield different results depending on context. In the case of
the:

• file title and class comment, they became “_0005f”;
• method name comment, they remained “_”;
• method signature, they became “_1”.

Likewise, the embedded dollars yield different results depending on context. In the case
of the:

• file title and class comment, they remained “_”;

JavaToDPR 1.03 Update

6/11

• method name comment, they became “_00024”;
• method signature, they became “_00024”.

Running javah
sample_$tricky.sample_$trickyClass$sample_$tricky_InnerClass yields
sample_0005f_tricky_sample_0005f_trickyClass_sample_0005f_tricky_0005fIn
nerClass.h:

/* Header for class
sample_0005f_tricky_sample_0005f_trickyClass_sample_0005f_tricky_0005fIn
nerClass */
/*
 * Class:
sample_0005f_tricky_sample_0005f_trickyClass_sample_0005f_tricky_0005fIn
nerClass
 * Method: sample__00024tricky_NativeInnerClassMethod
 * Signature: ()F
 */
JNIEXPORT jfloat JNICALL
Java_sample_1_00024tricky_sample_1_00024trickyClass_00024sample_1_00024t
ricky_1InnerClass_sample_1_00024tricky_1NativeInnerClassMethod
 (JNIEnv *, jobject);

No surprises.

Introducing overloaded methods

Another powerful feature of Java is the the possibility of overloading methods. This
allows a method (by name) to accept a variety of combinations of input arguments. How
does JNI deal with overloaded methods? It appends to the signature a double underscore
and a representation of the arguments part of the method signature. Recall that the full
signature of a method is “(<list of argument types>)<return type>”; only the
<list of argument types> is appended. Note that you cannot decide whether the
overload signature is needed or not unless you check the method in the context of its
siblings, something which the design of JavaToDPR 1.0.0 cannot handle.

Type Signature Overloaded Method Signature
void V

boolean Z Z
byte B B
char C C
short S S
int I I
long J J
float F F
double D D

<class type> L<full class name>; L<full class name>_2
<type>[] [<type> _3<type>

JavaToDPR 1.03 Update

7/11

What the table does not show is that the package separator (“.” in code) is a slash (“/”) in
the signatures, and that the inner class separator (also “.” in code) is a dollar (“$”) in the
signatures. Note how the semi-colon translates into “_2” and the opening bracket into
“_3”. But how are periods, underscores, and dollars going to be represented in the
overloaded method signature?

To see how it goes, we define a test class with overloaded methods:

package sample_$tricky;

public class
really_$trickyClass
{
 //Default constructor in use
 native public sample_$trickyClass
 really_$trickyNativeMethod();
 native public sample_$trickyClass
 really_$trickyNativeMethod(sample_$trickyClass[] someObject);

 public class
 really_$trickyInnerClass
 {
 //Default constructor in use
 native public sample_$trickyClass
 really_$trickyNativeInnerClassMethod();
 native public sample_$trickyClass

really_$trickyNativeInnerClassMethod(sample_$trickyClass.sample_$tricky_
InnerClass[] someObject);
 }
}

Running javah sample_$tricky.really_$trickyClass yields
sample_0005f_tricky_really_0005f_trickyClass.h (to make the siganture easier to
read, I’ve parsed it in alternating colour):

JavaToDPR 1.03 Update

8/11

/* Header for class sample_0005f_tricky_really_0005f_trickyClass */
/*
 * Class: sample_0005f_tricky_really_0005f_trickyClass
 * Method: really__00024trickyNativeMethod
 * Signature: ()Lsample_$tricky/sample_$trickyClass;
 */
JNIEXPORT jobject JNICALL
Java_sample_1_00024tricky_really_1_00024trickyClass_really_1_00024tricky
NativeMethod__
 (JNIEnv *, jobject);

/*
 * Class: sample_0005f_tricky_really_0005f_trickyClass
 * Method: really__00024trickyNativeMethod
 * Signature:
([Lsample_$tricky/sample_$trickyClass;)Lsample_$tricky/sample_$trickyCla
ss;
 */
JNIEXPORT jobject JNICALL
Java_sample_1_00024tricky_really_1_00024trickyClass_really_1_00024tricky
NativeMethod___3Lsample_1_00024tricky_sample_1_00024trickyClass_2
 (JNIEnv *, jobject, jobjectArray);

The embedded underscores and dollars change according to the rules previously
established. The signature appendix is generated from the actual signature (wherein the
periods are changed to slashes, whilst underscores and dollars are unchanged) according
to these rules:

• underscores become “_1”;
• semi-colons become “_2”;
• opening brackets become “_3”;
• dollars become “_00024”;
• forward slashes become “_”.

The JNI overloaded method signature consists of:
“Java_<package path>_<class name>_00024<inner class name>_<method
name>__<list of arguments signature>”.

Running javah
sample_$tricky.really_$trickyClass$really_$trickyInnerClass yields
sample_0005f_tricky_really_0005f_trickyClass_really_0005f_trickyInnerCla
ss.h:

JavaToDPR 1.03 Update

9/11

/* Header for class
sample_0005f_tricky_really_0005f_trickyClass_really_0005f_trickyInnerCla
ss */
/*
 * Class:
sample_0005f_tricky_really_0005f_trickyClass_really_0005f_trickyInnerCla
ss
 * Method: really__00024trickyNativeInnerClassMethod
 * Signature: ()Lsample_$tricky/sample_$trickyClass;
 */
JNIEXPORT jobject JNICALL
Java_sample_1_00024tricky_really_1_00024trickyClass_00024really_1_00024t
rickyInnerClass_really_1_00024trickyNativeInnerClassMethod__
 (JNIEnv *, jobject);

/*
 * Class:
sample_0005f_tricky_really_0005f_trickyClass_really_0005f_trickyInnerCla
ss
 * Method: really__00024trickyNativeInnerClassMethod
 * Signature:
([Lsample_$tricky/sample_$trickyClass$sample_$tricky_InnerClass;)Lsample
$tricky/sample$trickyClass;
 */
JNIEXPORT jobject JNICALL
Java_sample_1_00024tricky_really_1_00024trickyClass_00024really_1_00024t
rickyInnerClass_really_1_00024trickyNativeInnerClassMethod___3Lsample_1_
00024tricky_sample_1_00024trickyClass_00024sample_1_00024tricky_1InnerCl
ass_2
 (JNIEnv *, jobject, jobjectArray);

Invoking JavaToDPR 1.0.3 through java JavaToDPR -o <dpr name>.dpr -platform
Win32 sample_$tricky.really_$trickyClass$really_$trickyInnerClass
correctly generates:

JavaToDPR 1.03 Update

10/11

library
sample_0005f_tricky_really_0005f_trickyClass_really_0005f_trickyInnerCla
ss;
uses JNI;

(*
 * Class:
sample_0005f_tricky_really_0005f_trickyClass_really_0005f_trickyInnerCla
ss
 * Method: really__00024trickyNativeInnerClassMethod
 * Signature: ()Lsample_$tricky/sample_$trickyClass;
*)
function
Java_sample_1_00024tricky_really_1_00024trickyClass_00024really_1_00024t
rickyInnerClass_really_1_00024trickyNativeInnerClassMethod__
 (PEnv: PJNIEnv; Obj: JObject): JObject; stdcall;
begin
end;

 (*
 * Class:
sample_0005f_tricky_really_0005f_trickyClass_really_0005f_trickyInnerCla
ss
 * Method: really__00024trickyNativeInnerClassMethod
 * Signature:
([Lsample_$tricky/sample_$trickyClass$sample_$tricky_InnerClass;)Lsample
$tricky/sample$trickyClass;
*)
function
Java_sample_1_00024tricky_really_1_00024trickyClass_00024really_1_00024t
rickyInnerClass_really_1_00024trickyNativeInnerClassMethod___3Lsample_1_
00024tricky_sample_1_00024trickyClass_00024sample_1_00024tricky_1InnerCl
ass_2
 (PEnv: PJNIEnv; Obj: JObject; Arg1: JObjectArray): JObject; stdcall;
begin
end;

exports

Java_sample_1_00024tricky_really_1_00024trickyClass_00024really_1_00024t
rickyInnerClass_really_1_00024trickyNativeInnerClassMethod__,

Java_sample_1_00024tricky_really_1_00024trickyClass_00024really_1_00024t
rickyInnerClass_really_1_00024trickyNativeInnerClassMethod___3Lsample_1_
00024tricky_sample_1_00024trickyClass_00024sample_1_00024tricky_1InnerCl
ass_2;
end.

Overloaded methods sometimes appear in a different order than in the Java source code;
I’m not too sure where that comes from. Feel free to “fix” this feature. I’m looking
forward to JavaToDPR 1.0.4.

JavaToDPR 1.03 Update

11/11

Summary

There are three distinct character transformations going on:

• Header file title (becomes library name) and class comment;
• Method name comment;
• Method signature.

In the first case (header file title and class comment), the rules are (starting from code
expression, such as <package path>.<class name>$<inner class name>):

• Semi-colons, opening brackets and forward slashes are not possible;
• Underscores become “_0005f”;
• Dollars become “_”;
• Periods become “_”.

In the second case (method name comment), the rules are (starting from code expression,
such as <method name>):

• Periods, semi-colons, opening brackets and forward slashes are not possible;
• Underscores remain “_”;
• Dollars become “_00024”.

In the last case (method signature), the rules are (starting from the signature expression):

• Periods are not possible;
• Underscores become “_1”;
• Semi-colons become “_2”;
• Opening brackets become “_3”;
• Dollars become “_00024”;
• Forward slashes become “_”.

Note that the code expression <package path>.<class name>$<inner class name>
becomes <package path>/<class name>$<inner class name> in a signature.

